Leveraging Gene Networks to Estimate Perturbations on Gene Expression

نویسندگان

  • Nirmalya Bandyopadhyay
  • Manas Somaiya
  • Tamer Kahveci
  • Sanjay Ranka
چکیده

External factors such as radiation, drugs or chemotherapy can alter the expressions of a subset of genes. We call these genes the primarily affected genes. Primarily affected genes eventually can change the expressions of other genes as they activate/suppress them through interactions. Measuring the gene expressions before and after applying an external factor (i.e., perturbation) in microarray experiments can reveal how the expression of each gene changes. It however can not identify the cause of the change. In this paper, we consider the problem of identifying primarily affected genes given the expression measurements of a set of genes before and after the application of an external perturbation. We develop a novel probabilistic method to quantify the cause of differential expression of each gene. Our method considers the possible gene interactions in regulatory and signaling networks for a large number of perturbed genes. It uses a Bayesian model to capture the dependency between the genes. Our experiments on both real and synthetic datasets demonstrate that our method can find primarily affected genes with high accuracy. Our experiments also suggest that our method is significantly more accurate then SSEM and the Student’s t-test.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

STUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY

Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Multivariate Feature Extraction for Prediction of Future Gene Expression Profile

Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...

متن کامل

Multivariate Feature Extraction for Prediction of Future Gene Expression Profile

Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010